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Abstract. Ontologies can represent a significant asset of domain-specific
information systems, written predominantly using the object-oriented
paradigm. However, to be able to work with ontological data in this
paradigm, a mapping must ensure transformation between the ontol-
ogy and the object world. While many software libraries provide such a
mapping, they lack standardization or formal guarantees of its seman-
tics. In this paper, we provide a formalism for mapping ontologies be-
tween description logics and F-logic, a formal language for representing
object-oriented programming languages. This formalism allows to pre-
cisely specify the semantics of the object-ontological mapping and thus
ensure a predictable shape and behavior of the object model.
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1 Introduction

The object-oriented paradigm (OOP) has been a dominant software develop-
ment technique in the past two decades, mainly due to its ability to represent
the underlying domains in a natural and understandable way [4]. Ontologies, on
the other hand, can significantly increase the capabilities of information systems,
especially due to their formal semantics (in this paper, we consider description
logic (DL) [2] as the language backing the formal semantics of ontologies), ele-
ments with shared meaning and global identification, and inference enabled by
expressive languages. Yet, to be able to fully embrace the benefits of ontolo-
gies in OOP, a mapping is needed to transform data between the two worlds.
Many software libraries provide such functionality, however, without sufficient
guarantees as to the semantics of the mapping.

One differentiating aspect between an object model and a DL ontology1 is
the open world assumption of the latter – DL ontologies assume incomplete
knowledge of the domain. However, most domain-specific information systems
assume data completeness and thus, if a fact cannot be derived from the existing

1 In the sequel, we consider mapping of DL ontology specifications since the most
widespread ontology-related standards (e.g., OWL) and relevant tools are based on
the description logic formalism.
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data, it is considered false. To overcome this mismatch, integrity constraints can
be used to place restrictions on the knowledge base. Consider a simple vocabulary
management system which needs to keep track of authors of the vocabularies. In
description logics, this is represented by placing existential quantification on the
vocabulary records. Unfortunately, this merely ensures that some author exists
for each vocabulary. But they may remain unknown which is hardly sufficient
for ensuring integrity of data created by the system. Integrity constraints can be
used to enforce that an author is explicitly assigned to each record.

Thus, the goal of this paper is to provide a formalism for object-ontological
mapping (OOM) moderated by integrity constraints. We chose F-logic as a vessel
for this formalism. The main reasons are that it is a logic-based language, it has
been used to describe ontologies and it is specifically designed to represent the
structural aspects of object-oriented languages. Its syntax allows to concisely
represent the most common constructs needed by object-oriented domain models
– class hierarchies, local restrictions on property value types, possible cardinality
restrictions and individual assertions.

1.1 Running Example

We shall use the following example DL ontology throughout this paper to il-
lustrate the mapping. T represents the ontology schema, A are the actual data
and IC are integrity constraints placed on the ontology. All the corresponding
notions will be explained in Section 2.

In the example, we declare an asset and specify that it has to have an author
and it may have a last editor. This generic ontology is restricted by integrity
constraints for a system working with vocabularies, which are kinds of assets.
The constraints specify the same cardinalities of both author and last editor as
T , but require their values to be users of the system.

T ={Asset v=1author.>, Asset v61lastEditor.>,
V ocabulary v Asset, author v editor, lastEditor v editor}

A ={User(Tom), User(Sarah), V ocabulary(MetropolitanP lan)}
IC ={V ocabulary v ∀author.User, V ocabulary v=1author.User,

V ocabulary v ∀lastEditor.User, V ocabulary v61lastEditor.User}

The paper is structured as follows: Section 2 provides the necessary the-
oretical background, Section 3 presents the object-ontological mapping, while
Section 4 introduces the mapping of integrity constraints. Section 5 discusses
related work and Section 6 concludes the paper.

2 Background

This section presents the most important notions of the description logic SROIQ,
application of integrity constraints to ontologies, and F-logic.
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2.1 SROIQ

SROIQ [15] is an expressive description logic (DL), i.e., a decidable sub-language
of the first order logic (FOL), used to describe ontologies. Each SROIQ ontol-
ogy O is comprised of a terminology (TBox and RBox), which describes the
schema of the ontology, and a set of individual assertions representing actual
data (ABox)2. TBox consists of a concept hierarchy where concepts can be ei-
ther atomic or concept descriptions of the following forms: ¬C, C uD, C tD,
> nR.C, 6 nR.C, ∃R.Self , {a}, ∀R.C, ∃R.C, where C, D are concepts, R is
a role, n is a non-negative integer and a is an individual. RBox consists of a
hierarchy of roles and axioms stating their properties, for instance, Sym(R) de-
noting a symmetric role, or Dis(R,Q) denoting disjoint roles. The schema also
contains built-in concepts >, ⊥ and a built-in universal role RU .

Individual assertions are of the form C(a), R(a, b), a = b and a 6= b, where
a and b are individuals, C is a concept and R is a role. The set NC represents
concept names, NR role names, and NI denotes the set of individual names.

The semantics of a SROIQ ontology O is given by an interpretation I =
(∆I , ·I), where∆I is the domain of the interpretation and ·I is the interpretation
function. This function assigns to every atomic concept A a set AI ⊆ ∆I , to
every atomic role R a binary relation RI ⊆ ∆I × ∆I and to every individual
an element of ∆I . >I is ∆I , ⊥I is the empty set ∅ and RIU is ∆I × ∆I . I is
a model of an ontology O consisting of a TBox T , an RBox R, and an ABox
A (I |= O = T ∪ R ∪ A) if it satisfies all the axioms in O. A set of axioms
Θ logically entails an axiom θ (Θ |= θ) if and only if all models of Θ are also
models of θ. Concrete rules for interpretation of concept descriptions and axioms
are described in [15] and we omit them here for the lack of space.

2.2 Integrity Constraints

The intention of integrity constraints (ICs) in the area of application access to
DL ontologies is mostly to restrict the open-world nature of (a portion of) an
ontology. While OWL does allow to express certain constraints, its expressive-
ness in this regard is limited. For example, a DL ontology might require that
every asset must have a unique author (Asset v=1author.>). If an asset v does
not have one, the reasoner will infer an anonymous individual, which will satisfy
the requirement for the sake of ontology consistency (i.e., existence of a model).
However, a vocabulary management system requires a stronger condition to be
satisfied – every vocabulary (a special kind of asset) must have a known author
of type user. Such a constraint cannot be enforced in OWL with standard se-
mantics. However, there are approaches which allow this type of restrictions. [10]
introduces Minimal Knowledge and Negation as Failure logics, while [24] uses
minimal Herbrand models. Unfortunately, both of these can lead to counter-
intuitive results, as was pointed out in [28]. It presents a novel approach which

2 SROIQ allows expressing individual assertions using TBox axioms with nominals.
However, ABox assertions provide a natural, easy to read syntax which we will use
throughout this paper.
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remedies these issues. A more recent effort in [26] discusses the flaws of all of the
aforementioned solutions and proposes the use of DBox-based completely speci-
fied concepts and roles. However, not even this approach is immune to debatable
results. Consider the following example:

T ={Employee v Person, F light v ∃hasPassenger.Person}
A ={Flight(c), F light(d)}
DB ={Person(a), Employee(b), hasPassenger(c, a), hasPassenger(d, b)}

We put hasPassenger, Person and Employee into the DBox, so that no unex-
pected instances are generated. However, this will cause an IC violation, because
Person(b) will be inferred for a completely specified concept Person. The ap-
proach of Tao et al. [28] does not suffer from such issues, because, while it does
work only with named individuals, it does not prevent inference of new type-
s/relationships for them. We will be using it for this work as we consider it the
most suitable for the OOM case.

Integrity Constraint Semantics Since it highly relevant for our work, let us
provide a brief overview of the integrity constraint semantics defined by Tao et
al. (details can be found in [28]). They define an IC interpretation as a pair I,U
where I is a SROIQ interpretation defined over ∆I and U is a set of SROIQ
interpretations. An IC interpretation of a concept C and a role R is then defined
as follows:

CI,U ={xI | x ∈ NI s.t. ∀J ∈ U , xJ ∈ CJ }
RI,U ={〈xI , yI〉 | x, y ∈ NI s.t. ∀J ∈ U , 〈xJ , yJ 〉 ∈ RJ }

IC interpretation I,U extends to complex concept descriptions as one would
expect, e.g., for (C uD)I,U = CI,U ∩DI,U . This in essence means that a known
individual a belongs to a concept C under the IC interpretation I,U if it belongs
to it in all interpretations in U . Similar principles apply to axiom satisfaction,
e.g., C v D is satisfied in I,U under the condition that CI,U ⊆ DI,U . Tao et
al. also introduce the notion of minimal equality models. Our approach uses an
analogous construct, therefore, we postpone its discussion to Section 4.

2.3 F-logic

F-logic [18,17,1] is a formalism rooted in FOL which can be used to describe
structural aspects of object-oriented or frame-based languages. It has model-
theoretic semantics and a sound and complete proof theory. In the discussion of
F-logic syntax, we use the revised version of [1] and w.l.o.g. omit the distinction
between inheritable and non-inheritable methods. Given that F-logic allows one
to specify relatively complex programs, we use a restricted variant of F-logic,
which is suitable for mapping of DL, but does not contain, for instance, methods
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with arbitrary arity (we are using only attributes – parameterless methods). We
use sorted F-logic, so that (atomic) classes are disjoint from individuals and
methods (much like classes, individuals and properties are disjoint in DL).

F-logic Syntax The alphabet of an F-logic language L consists of

– A set of object constructors F = C∪R∪E∪A, where C is a set of class names
(0-ary function symbols), R is a set of methods (0-ary function symbols),
E is a set of instances (0-ary function symbols), and A is a set of function
symbols (it essentially allows us to parameterize concept constructors, as
will be seen in Section 3). C, R, E , and A are mutually disjoint,

– A set of predicate symbols P,
– An infinite set of variables V,
– Auxiliary symbols like (, ), [, ], → etc.,
– Logical connectives and quantifiers ∧, ∨, ¬, ∀, ∃.

An id-term is a first-order term composed of an object constructor and vari-
ables. A variable-free object constructor is called a ground id-term and the set
of all ground id-terms is denoted U(F). Formulas in F-logic can be either molec-
ular formulas, or complex formulas consisting of other formulas connected using
logical connectives and quantifiers. Molecular formulas can be:

1. Is-a assertions of the form A ::B or o :A, where o, A, B are id-terms,
2. Object molecules of the form O[ a ’;’ separated list of method expressions].

Where method expressions can be:

– data expressions of the form m → v, where m and v are id-terms (v is the
attribute value),

– Signature expressions of the form m⇒ (T1, ..., Tn), where n ≥ 1 and m and
Ti are id-terms (Ti are the return types).

In short, data expressions represent attribute values, whereas signature expres-
sions represent their return types.

F-logic Semantics Semantics of F-logic is specified using F-structures. Before
we define an F-structure, we need several additional notions.

For a pair of sets U , V , Total(U, V ) denotes the set of all total functions
from U to V . Similarly, Partial(U, V ) denotes the set of all partial functions
from U to V . We use P(U) to express the power set of U . P↑(U) is the set of all
upward-closed subsets of U . A set V ⊆ U is upward closed if for v ∈ V , u ∈ U ,
v ≺U u implies u ∈ V , where ≺U is an irreflexive partial order on U (see below).
PartialAM≺U

(U,P↑(U)) denotes the set of all partial anti-monotonic functions
from U to P↑(U). A function f is partial anti-monotonic if for vectors u,v ∈ Uk,
v ≺U u, if f(u) is defined, then f(v) is also defined and f(u) ⊆ f(v).

An F-structure is then a tuple I = 〈U,≺U ,∈U , IF , IP , I→, I⇒〉, where:

– U is the domain of I consisting of disjoint subdomains UE , UC , UR, UA,
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– ≺U is an irreflexive partial order on UC∪A representing the subclass relation-
ship,3

– ∈U is a binary relationship on UE × UC∪A specifying instance membership
in classes,

– IF : F →
⋃∞
k=0 Total(U

k, U) is a mapping which represents function symbols
from F by functions from Uk to U . For k = 0, IF (f) can be identified with
an element of U . IF maps names to their respective subdomains, e.g., class
names from C to UC ,

– IP(p) ⊆ Un for any n-ary predicate symbol p ∈ P,

– I→ : UR → Partial(UE ,P(UE)),

– I⇒ : UR → PartialAM≺U
(UC∪A∪E ,P↑(UC∪A)).

Remarks The use of upward-closed sets is important for class hierarchies – it
means that along with each class, the set also contains all its superclasses. The
relationship between I→ and I⇒ is such that I⇒ defines the target (range) type
of an attribute, whereas I→ defines particular values.

A variable assignment ν is a mapping from the set of variables, V, to the
domain U , which extends to id-terms as follows: ν(d) = IF (d) if d ∈ F has
arity 0 and ν(f(..., t, ...)) = IF (f)(..., ν(t), ...). Intuitively, given an F-structure I
and a variable assignment ν, a molecule t[...] is true under I w.r.t. to ν, written
I �ν t[...], if and only if the object ν(t) has the properties defined by the F-
molecule. For example, I �ν (O :: P ) iff ν(O) �U ν(P ). For attributes, this
means that there exist functions interpreting them and they have the right return
values (types), e.g., I �ν q[m → v] iff I→(ν(m))(ν(q)) is defined and contains
ν(v). An object molecule is considered a conjunction of method expressions.
Precise definitions of logical implication in F-logic can be found in [18], Sec. 5.2.
Satisfaction of complex formulas (using logical connectives and quantifiers) is
defined in the usual first-order sense. An F-logic theory S logically implies an
axiom α (S �ν α) iff all models of S are also models of α. Since we will be working
with closed formulas only, we can omit the variable assignment identifier. Instead,
we shall denote F-logic semantic implication by |=F to distinguish it from DL
entailment. We omit discussion of properties of F-structures here due to the lack
of space. Nevertheless, since these properties do affect the formalization, the
reader should refer to [18], Sec. 7, if necessary.

Queries An F-logic query Q is a molecule. The set of answers to Q w.r.t. a set
of formulas P is the smallest set of molecules that:

– contains all instances of Q (variable assignments for all variables in Q) that
are found in the model of P ,

– is closed under |=F (see [18], Sec. 12.1.2).

3 UC∪A is an abbreviation for UC ∪ UA
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3 Mapping

We begin this part by introducing the mapping of concept descriptions and
ontological axioms. We then show that the mapping preserves entailment in
both directions.

The mapping is inspired by [3] but supports a more expressive DL. The use
of sorted F-logic and proofs of entailment equivalence are based on [6]. While
the version provided here is for SROIQ, the latest version of F-logic supports
also datatypes [1], so it could be easily extended to SROIQ(D). Table 1 shows
mapping of concept descriptions. Similar to [3], several new function symbols
are introduced – Not, AtLeast, AtMost, HasSelf , Nom, All, Some ∈ A –
which allow us to represent SROIQ concept constructs which cannot be directly
mapped to F-logic. For instance, > nR.C does not correspond to [RR ⇒{n:∗} CC ]
because the SROIQ version admits also R-fillers of other types than C, whereas
the F-logic signature expression would require all RR-fillers to belong to CC .
Also, signature expressions cannot be used to infer the type of values of the
corresponding data expressions. For each of the new function symbols, we specify
a condition on the underlying F-structures to ensure correct semantics w.r.t. their
SROIQ counterparts.

Table 1. Mapping of concept descriptions. By default, all variables are universally
quantified over E . XC (XR) represents a concept (method) name, i.e., a function symbol
from C (R). AtMost is defined analogously to AtLeast and corresponds to 6 nR.C.

SROIQ F-logic F-logic Semantics

A AC
¬C Not(CC) I |=F x :Not(CC) iff IF (x) /∈U IF (CC)

C uD CC and DC
C tD CC or DC
> nR.C AtLeast(n,RR, CC) I |=F x :AtLeast(n,RR, CC) iff

∃y1...yn ∈ UE s.t. yi ∈ I→(IF (RR))(IF (x))
∧yi ∈U IF (CC), for ¬(yi = yj)

∃R.Self HasSelf(RR) I |=F x :HasSelf(RR) iff IF (x) ∈ I→(IF (RR))(IF (x))
{a} Nom(aE) I |=F x :Nom(aE) iff IF (x) = IF (aE)
∀R.C All(RR, CC) I |=F x :All(RR, CC) iff

∀y ∈ UE s.t. y ∈ I→(IF (RR))(IF (x))⇒ y ∈U IF (CC)
∃R.C Some(RR, CC) I |=F x :Some(RR, CC) iff

∃y ∈ UE s.t. y ∈ I→(IF (RR))(IF (x)) ∧ y ∈U IF (CC)

SROIQ top (bottom) concept > (⊥) is mapped to F-logic concept >C (⊥C)
for which it must hold ∀x ∈ UE , x ∈U IF (>C) (∀x ∈ UE , x /∈U IF (⊥C)).
Similarly, SROIQ universal role RU is mapped to an F-logic method MR such
that ∀x, y ∈ UE y ∈ I→(IF (MR))(x).

TBox and RBox axiom mapping is shown in Table 2. We make use of F-logic
predicates and define conditions under which they are true.
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ABox individual assertions are mapped straightforwardly, C(a) as an is-a
assertion aE : CC , R(a, b) as a data expression aE [RR → bE ] and (in)equality
a = b (a 6= b) as aE = bE (¬(aE = bE)).

Table 2. Mapping of TBox and RBox axioms. RBox axioms are mapped to predicates,
for which we provide satisfaction conditions on the F-structure I. ⇒ outside of an F-
molecule represents regular logical implication. Variables are universally quantified over
UE .

SROIQ F-logic Condition on I

C v D CC ::DD IF (CC) �U IF (DC)
R v S subPropertyOfP(RR, SR) y ∈ I→(IF (RR))(x)⇒ y ∈ I→(IF (SR))(x)
Sym(R) SymP(RR) y ∈ I→(IF (RR))(x)⇒ x ∈ I→(IF (SR))(y)
Asy(R) AsyP(RR) y ∈ I→(IF (RR))(x)⇒ x /∈ I→(IF (SR))(y)
Tra(R) TraP(RR) y ∈ I→(IF (RR))(x) ∧ z ∈ I→(IF (RR))(y)⇒

z ∈ I→(IF (RR))(x)
Ref(R) RefP(RR) x ∈ I→(IF (RR))(x)
Irr(R) IrrP(RR) x /∈ I→(IF (RR))(x)

Dis(R,S) DisP(RR, SR) y /∈ I→(IF (RR))(x) ∨ y /∈ I→(IF (SR))(x)

Running Example To illustrate the mapping, we revisit the running example. A
corresponding F-logic ontology looks as follows:

T F ={AssetC ::Some(authorR,>C), AssetC ::AtMost(1, authorR,>C),
AssetC ::AtMost(1, lastEditorR,>C), V ocabulary ::Asset,

subPropertyOfP(authorR, editorR),

subPropertyOfP(lastEditorR, editorR)}
AF ={TomE :UserC , SarahE :UserC ,MetropolitanP lanE :V ocabularyC}

Now we have to show that the mapping preservers entailment. First, we
show that a formula θ is satisfiable in a SROIQ language LDL if and only if a
corresponding formula θF is satisfiable in a corresponding F-logic language LF .

Lemma 1. Let θ be a formula in LDL and θF a corresponding F-logic formula
in an F-logic language LF . Then θ is satisfiable in some interpretation I of LDL
if and only if θF is satisfiable in some F-structure I of LF .

Proof. The lemma can be proven by showing how an F-structure I can be con-
structed for a SROIQ interpretation I and vice versa. We will demonstrate
that they will have the same truth value for the corresponding axioms.

Let us begin with the RBox axioms.

– I is a model of Sym(R) iff 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI . We construct
an F-structure I such that x, y are mapped to elements IF (xE), IF (yE) such
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that IF (yE) ∈ I→(IF (RR))(IF (xE)) implies IF (xE) ∈ I→(IF (RR))(IF (yE)).
Then, I is a model of SymP(RR).

Conversely, suppose J is a model of SymP(RR), thus, it has to adhere to
the condition defined in Table 2. For such IF (xE), IF (yE), we can create an
interpretation J with elements x, y such that 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ RI .
Thus, the mapping for symmetric role is equivalent.

– The proof for Asy, Tra, Ref , Irr and Dis is analogous. One can easily verify
the equivalence of conditions on an interpretation I described in [15] and
the F-structure I conditions in Table 2.

– Consider a role inclusion axiom R v S. For its model I must hold RI ⊆
SI . This can be expanded as 〈x, y〉 ∈ RI implies 〈y, x〉 ∈ SI . Once again,
we can construct an F-structure I containing elements IF (xE) and IF (yE),
corresponding to x and y. Now, whenever 〈x, y〉 ∈ RI , we will have IF (yE) ∈
I→(IF (RR))(IF (xE)) in I. The same for S and SR. This corresponds to the
I-condition for subPropertyOfP(RR, SR).

It should be clear that the converse holds as well. Thus, role inclusion axioms
can be faithfully mapped to the subPropertyOfP predicate and vice versa.

A general concept inclusion axiom (GCI) C v D is mapped to an is-a ex-
pression CC :: DC . For a DL model I must hold CI ⊆ DI . Written explicitly,
this means that for all x ∈ ∆I , x ∈ CI implies x ∈ DI . In an F-structure I
which is a model of CC ::DC must hold IF (CC) � IF (DC). The semantics defined
in [18] specifies that if x ∈U IF (CC) and IF (CC) � IF (DC), then x ∈U IF (DC).
Simply put, in both DL and F-logic, the relationship is that whenever an element
is an instance of a subconcept/subclass, it is also an instance of its supercon-
cept/superclass. Therefore, the mapping between DL GCI axioms and subclass
expressions in F-logic is equivalent. To ensure a correct baseline for GCI map-
ping, we will show the correspondence between the basic DL concept descriptions
and their F-logic counterparts. Of particular interest are the newly introduced
function symbols Not, AtLeast etc. We have to ensure that the extensions of
the corresponding concepts are equivalent. The extension of a DL concept C is
the set of elements CI ⊆ ∆I . In F-logic, a class’ extension is the set of domain
elements which are in ∈U relation with its domain representation IF (CC). Let
us now process the concept mapping from Table 1.

– For C an atomic concept name the equivalence is trivial.

– For C ← ¬D, (¬D)I = {x ∈ ∆I | x /∈ DI}. We can construct an F-structure
I where we map xI to IF (xE), the fact that xI does not belong into DI would
be mapped to I as the lack of ∈U -relationship between elements IF (xE) and
IF (DC). Such elements represent the extension of Not(DC) which proves the
DL to F-logic direction.

Now, for the other direction, the extension of Not(DC) in its model J is
the set of all IF (xE) such that IF (xE) /∈U IF (DE). To build an equivalent
SROIQ model J , IF (xE) will be mapped to xJ , IF (DE) to DJ ⊂ ∆J such
that xJ /∈ DJ . These xJ s represent the extension of (¬D), so the mapping
allows to build equivalent models in both directions.
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– For C ← B uD, its extension in a model I is the intersection of extensions
of B and D, i.e., (B uD)I = BI ∩DI . In F-logic, the semantics of (BC and
DC) is the same, i.e., class intersection.

– For C ← B tD, the reasoning analogous to B uD.

– Take C ←> nR.D. For its instances x ∈ ∆I in a model I must hold
|{y ∈ ∆I | 〈x, y〉 ∈ RI∧ y ∈ DI}| ≥ n. We can again construct an equivalent
F-structure I where for each DL domain element y we create a new domain el-
ement yF which belongs to I→(IF (RR))(IF (xE)) and is in a ∈U -relationship
with IF (DC). All such xE constitute the extension of AtLeast(n,RR, DC).

– For C ← ∃R.Self , its extension in a model I is the set of all x ∈ ∆I

such that 〈x, x〉 ∈ RI . An equivalent F-structure I is built by mapping x
to elements IF (xE) such that IF (xE) ∈ I→(IF (RR))(IF (xE)). Such elements
comprise the extension of HasSelf(RR)

– For C ← {a}, ({a})I = {x ∈ ∆I | x = aI} in a model I. The interpretation
of Nom(aE) also relies on equality of domain elements.

– Take C ← ∀R.D and a model I, (∀R.D)I = {x ∈ ∆I | ∀y ∈ ∆I s.t.
〈x, y〉 ∈ RI ⇒ y ∈ DI}. x and y are mapped to F-structure I elements
IF (xE) and IF (yE) in such a way that ∀IF (yE) ∈ I→(IF (RR))(IF (xE))
holds that IF (yE) ∈U IF (DC). Such an F-structure provides an extension
for All(RR, DC). Clearly, this transformation also works in the other direc-
tion.

– Finally, let C ← ∃R.D. Its extension in a model I corresponds to (∃R.D)I =
{x ∈ ∆I | ∃ y ∈ ∆I s.t. 〈x, y〉 ∈ RI ∧ y ∈ DI}. A corresponding F-structure
I contains an element IF (yE) such that IF (yE) ∈ I→(IF (RR))(IF (xE)) ∧
IF (yE) ∈U IF (DC). It can be seen that this transformation again works in
both directions. Moreover I provides an extension of Some(RR, DC), so we
can conclude that the mapping is again faithful.

The last part of this proof needs to deal with ABox axioms. However, ABox
axioms can be internalized using nominals as follows: C(a) to {a} v C, R(a, b)
to {a} v ∃R.{b}, a = b to {a} ≡ {b}4 and a 6= b to {a} 6≡ {b}. This way, there
is no need to treat them explicitly. ut

The lemma allows us to show that entailment is preserved by the mapping.

Theorem 1. Let Θ and ΘF be corresponding theories in LDL and LF . For any
formula θ in LDL holds:

Θ |= θ iff ΘF |=F θF ,

where |=F represents F-logic entailment.

Proof. The proof relies on Lemma 1 and the fact that entailment checking can
be reduced to satisfiability checking. ut
4 C ≡ D corresponds to C v D ∧D v C.
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4 Mapping Integrity Constraints

Integrity constraints mapping between SROIQ and F-logic consists of two parts:
1) IC semantics with closed-world view of the data; 2) means of validating these
ICs. The mapping is important because the application object model is based
on the integrity constraints.

4.1 Integrity Constraints Semantics

IC semantics allows to impose a closed-world view on a portion of the knowledge
base K affected by the integrity constraints. We follow the approach of Tao
et al. [28] and define an augmented F-structure IIC with IC semantics. This
approach has the advantage of not introducing additional syntactic constructs
and giving the IC axioms a natural, easy-to-understand meaning. The semantics
uses the notion of minimal equality models (ModME) to support a weak form
of unique name assumption. The original definition of ModME from [28] can be
carried over to F-logic as follows:

Consider a knowledge base KF and let EI be the set of equality relations
satisfied by I, i.e., EI = {〈a, b〉 | a, b ∈ E s.t. I |=F IF (a) = IF (b)}. A relation
I ≺F= J, where I and J are F-structures, holds iff:

– ∀C ∈ C ∪ A, if I |=F a :C, then J |=F a :C,
– ∀R ∈ R, if I |=F a[R→ b], then J |=F a[R→ b],
– EI ⊂ EJ.

ModFME(KF ) is then defined as ModFME(KF ) = {I | I is a model of KF s.t.
@J EJ ≺F= EI}.

The augmented F-structure with IC semantics is a tuple IIC = 〈U , ≺ICU ,
∈ICU , IF , IICP , IIC→ , I⇒〉, where:

– ≺ICU = {〈IF (x), IF )(y)〉 | x, y ∈ C s.t. ∀J ∈ ModFME(KF ),J |=F IF (x) ≺U
IF (y)}

– ∈ICU = {〈IF (x), IF (y)〉 | x ∈ E , y ∈ C ∪ A s.t. ∀J ∈ ModFME(KF ),J |=F

IF (x) ∈U IF (y)}
– IF (y) ∈ IIC→ (IF (z))(IF (x)) iff x, y ∈ E , z ∈ R ∧ ∀J ∈ ModFME(KF ),J |=F

IF (y) ∈ IIC→ (IF (z))(IF (x))
– IICP (p) = {〈IF (y1), ..., IF (yn)〉 | yi ∈ F s.t. ∀J ∈ ModFME(KF ),J |=F

〈IF (y1), ..., IF (yn)〉 ∈ IICP (p)}, where n is the arity of p,
– And the other parts of IIC are the same as in a regular F-structure.

Based on IIC , we can now define the IC semantics of concept descriptions.
This is done in Table 3. One modification is the switch from All(RR, CC) to
the built-in signature expression [RR ⇒ CC ]. This can be done thanks to the
notion of typing, which requires data expressions to correspond to a signature
expression declaring their types, e.g., for signature CC [RR ⇒ DC ], typing rules
require d from data expression c[RR → d] to be of type DC , i.e., d :DC . Typing
is an optional, non-monotonic, part of F-logic. We utilize it for IC declaration
because it provides a nice, succinct, frame-based syntax. IC Semantics of axioms
should follow trivially from the definitions in Table 3.
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Table 3. Integrity constraint semantics of F-logic concept descriptions. The right hand
column specifies a condition under which an individual x is an instance of the concept
specified in the left hand column under the IC semantics.

Concept IIC |=F x :Concept iff

Not(CC) x ∈ E ∧ IF (x) /∈IC
U IF (CC)

CC and DC x ∈ E ∧ IF (x) ∈IC
U IF (CC) ∧ IF (x) ∈IC

U IF (DC)
CC or DC x ∈ E ∧ IF (x) ∈IC

U IF (CC) ∨ IF (x) ∈IC
U IF (DC)

AtLeast(n,RR, CC) x ∈ E ∧ ∃y1, ...yn ∈ E s.t. IF (yi) ∈ IIC→ (IF (RR))(IF (x))
∧IF (yi) ∈IC

U IF (CC) ∧ ¬(IF (yi) = IF (yj))
HasSelf(RR) x ∈ E ∧ IF (x) ∈ IIC→ (IF (RR))(IF (x))

Nom(aE) x ∈ E ∧ IF (x) = IF (aE)
[RR ⇒ DC ] IIC is a typed F-structure [18] (Sec. 13)

Some(RR, CC) x ∈ E ∧ ∃y ∈ E s.t. IF (y) ∈ IIC→ (IF (RR))(IF (x)) ∧ IF (y) ∈IC
U IF (CC)

Running Example Reviewing our running example, the biggest change is the use
of method signatures with cardinality constraints. This significantly reduces the
verbosity of the ICs and makes them arguable easier to understand.

ICF ={V ocabularyC [authorR ⇒{1:1} UserC ; lastEditorC ⇒{0:1} UserC ]}

Figure 1 illustrates how a resulting integrity constraints-based model may look
in terms of a UML class diagram.

Fig. 1. UML class diagram of a model based on the integrity constraints from the
running example.

4.2 Integrity Constraints Validation

Now that one is able to define integrity constraints for an ontology, it is necessary
to be able to validate them as well. IC semantics is a convenient construct,
but because no corresponding implementation exists, it is impractical. Thus,
integrity constraint validation in F-logic utilizes the built-in possibility to execute
queries over the underlying ontology. F-logic is a full-fledged logic programming
language, so it allows to define rules and pose queries to the knowledge base.

Since ICs represent a close-world view of the ontology, negation as failure
(NAF) is necessary to be able to represent it in the queries. Like most logic pro-
gramming languages [23], we introduce the NAF operator not, whose semantics
is KF |= not(α) iff KF 6|= α, where α is an F-formula.
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We now show how the IC axioms can be translated into F-logic queries with
not. The rationale is that if the knowledge base entails the query, there is an
IC violation. We again follow the line of reasoning of [28], which introduces two
translation operators: TC for concepts and T for axioms. Definition of TC can
be found in Table 4, T is then presented in Table 5.

Table 4. Integrity constraints validation transformation rules for concepts. CA is an
atomic class name.

Concept TC
TC(x :CA) x :CA

TC(x :Not(C)) not(x :TC(C))
TC(x : (C1 and C2)) x :TC(C1) ∧ x :TC(C2)
TC(x : (C1 or C2)) x :TC(C1) ∨ x :TC(C2)

TC(x :AtLeast(n,R,C))
∧

1≤i≤n x[R→ yi] ∧ yi :TC(C)
∧

1≤i≤j≤n not(yi = yj)

TC(x :HasSelf(R)) x[R→ x]
TC(x :Nom(a)) x = a
TC(x[R⇒ C]) x[R→ y]⇒ y :TC(C)

TC(x :Some(R,C)) x[R→ y] ∧ y :TC(C)

The universal role restriction concept comes with a little twist. Instead of
representing a standalone concept, we attach a corresponding signature expres-
sion to the target concept, i.e., instead of mapping a GCI C v ∀R.D, we have
directly CC [RR ⇒ DC ]. A corresponding IC validation query in F-logic is cre-
ated by verifying that data expressions of all instances of CC comply with the
signature expression, i.e., TC(x[RR ⇒ DC ]). This can be also seen in the running
example below.

Table 5. Integrity constraints validation transformation rules for axioms. Ci is a con-
cept, Ri is a role and x, yi are variables.

Axiom T
T (C1 ::C2) TC(x :C1) ∧ not(TC(x :C2))

T (subPropertyOfP(R1, R2)) x[R1 → y] ∧ not(x[R2 → y])
T (SymP(R)) x[R→ y] ∧ not(y[R→ x])
T (AsyP(R)) x[R→ y] ∧ y[R→ x]
T (TraP(R)) x[R→ y] ∧ y[R→ z] ∧ not(x[R→ z])
T (RefP(R)) not(x[R→ x])
T (IrrP(R)) x[R→ x]

T (DisP(R1, R2)) x[R1 → y] ∧ x[R2 → y]

Running Example Since a signature expression with cardinality constraints is
essentially a combination of multiple concept descriptions, it results in mul-
tiple validation queries. The queries presented below can be executed in F-
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logic implementations like FLORA-25, which already supports the NAF op-
erator. Presence of results for any of the queries indicates an IC violation.
In our case, the constraints are violated by the lack of an explicit author of
MetropolitanP lan, which is manifested by the second query below. Asserting
an author, e.g., MetropolitanP lanE [authorR → TomE ], would fix the IC viola-
tion.

T ={x :V ocabulary ∧ x[authorR → y] ∧ not(y :UserC),

x :V ocabularyC ∧ not(x[authorR → y] ∧ y :UserC),

x :V ocabularyC ∧ x[authorR → {y1, y2}]
∧

1≤i≤2

yi :UserC ∧ not(y1 = y2)

x :V ocabulary ∧ x[lastEditorR → y] ∧ not(y :UserC),

x :V ocabularyC ∧ x[lastEditorR → {y1, y2}]
∧

1≤i≤2

yi :UserC ∧ not(y1 = y2)}

Finally, we have to show that the validation queries faithfully represent the IC
semantics, i.e., that validation queries generated from IC axioms return results
whenever any of the IC axioms are violated by the knowledge base.

Theorem 2. Consider a knowledge base K, a set of integrity constraint axioms
IC and a set of IC validation queries Q, constructed by applying the translation
operator T on each IC axiom α in IC. If K violates any of the IC axioms in IC,
then ∃ q ∈ Q such that K |=F q.

Proof. We first show the equivalence of RBox IC axioms to their validation
queries.

– The IC semantics of axiom α = subPropertyOfP(R,Q) requires an F-
structure IIC to satisfy IF (y) ∈ IIC→ (IF (R))(IF (x))⇒ IF (y) ∈ IIC→ (IF (Q))(IF (x))
for all individuals x, y ∈ E . Recall that IIC is the smallest model w.r.t.
equality. For the axiom to be violated, we need to find a model in which
the axiom is not true, i.e., an F-structure J such that J |=F ∃x, y ∈ E s.t.
IF (y) ∈ I→(IF (R))(IF (x)) ∧ IF (y) /∈ I→(IF (Q))(IF (x)).
Now, the corresponding validation query, as specified in Table 5, is x[R →
y] ∧ not(x[Q → y]), where not represents the absence of knowledge. The
query is looking for an F-structure H |=F IF (y) ∈ I→(IF (R))(IF (x)) and
H 6|=F IF (y) ∈ I→(IF (Q))(IF (x)), where x, y ∈ E are existentially quan-
tified. Thus, the two parts can be combined as follows: H |=F ∃x, y ∈ E
s.t. IF (y) ∈ I→(IF (R))(IF (x)) ∧ IF (y) /∈ I→(IF (Q))(IF (x)). It can be seen
that the query returns results if and only if integrity constraint axiom α is
violated.

– For α = SymP(R), IC semantics demands an F-structure IIC |=F IF (y) ∈
IIC→ (IF (R))(IF (x)) ⇒ IF (x) ∈ IIC→ (IF (R))(IF (y)). A series of transfor-
mations analogous to the sub-property case above will lead to IC viola-
tion in case of an F-structure J such that J |=F ∃x, y ∈ E s.t. IF (y) ∈

5 http://flora.sourceforge.net/, accessed 2019-04-10.

http://flora.sourceforge.net/
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I→(IF (R))(IF (x))∧ IF (x) /∈ I→(IF (R))(IF (y)) and is a model of the knowl-
edge base containing IC axiom α.
The validation query x[R → y] ∧ not(y[R → x]) will be looking for an F-
structure H such that H |=F ∃x, y ∈ E s.t. IF (y) ∈ I→(IF (R))(IF (x)) ∧
IF (x) /∈ I→(IF (R))(IF (y)). Thus, we have again arrived at equivalent for-
mulas for IC violation.

– IC axiom and validation query equivalence for α = AsyP(R) (α = TraP(R),
α = RefP(R), α = IrrP(R), and α = DisP(R,Q)) are proven analogously.

The second part of the proof deals with general concept inclusion axioms
for various concept descriptions. Once again, the goal is to show that, for each
concept description, the GCI axiom, when taken as an integrity constraint, is
violated if and only if a corresponding validation query, constructed using the
transformation rules from Table 4, finds results.

– Let α = C ::Not(D) be an integrity constraint axiom. An F-structure IIC

satisfies it if IIC |=F IF (C) �ICU IF (Not(D)). α is violated if there ex-
ists an F-structure J such that J 6|=F IF (C) �U IF (Not(D)), i.e., J |=F

¬(IF (C) �U IF (Not(D))). Now, from the properties of F-structures, we
know that if a ∈U b ∧ b �U c, then a ∈U c [18]. So, in J, we have that
¬(IF (C) �U IF (Not(D))) iff ∃x ∈ E s.t. IF (x) ∈U IF (C)∧x /∈U IF (Not(D)).
Given the interpretation of Not(D), this can be rewritten as ∃x ∈ E s.t.
IF (x) ∈U IF (C) ∧ x ∈U IF (D).
The validation query for GCI involving Not(D) is as follows: x :C ∧ not(x :
Not(D)). Thus, it searches for an F-structure H such that H |=F IF (x) ∈U
IF (C) and H 6|=F IF (x) ∈U IF (Not(D)), with x ∈ E existentially quantified.
This can be rewritten as H |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ IF (x) /∈U
IF (Not(D)). Again, flipping the /∈U and Not(D), the result is H |=F ∃x ∈ E
s.t. IF (x) ∈U IF (C) ∧ IF (x) ∈U IF (D). So the query has results iff α is
violated.

– For an IC axiom α = C :: (B and D) an F-structure IIC must satisfy
IF (C) �ICU IF (B) ∧ IF (C) �ICU IF (D). α is violated if there exists a model
of the knowledge base J such that J |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧
¬(IF (x) ∈U IF (B) ∧ IF (x) ∈U IF (D)), so, J |=F ∃x ∈ E s.t. IF (x) ∈U
IF (C) ∧ (IF (x) /∈U IF (B) ∨ IF (x) /∈U IF (D)).
The validation query for α – x :C ∧ not(x : (B and D)) – searches for an F-
structure H such that H |=F IF (x) ∈U IF (C) and H 6|=F IF (x) ∈U IF (B)∧
IF (x) ∈U IF (D), where x is existentially quantified over both formulas. This
is again combined into a single query formula H |=F ∃x ∈ E s.t. IF (x) ∈U
C∧ (IF (x) /∈U IF (B)∨IF (x) /∈U IF (D)). Once again, the query corresponds
to the formula for violation of α.

– For an IC axiom α = C :: (B or D), the proof goes along the same lines
as for C :: (B and D). Thus, α is violated if there is a model J such that
J |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ IF (x) /∈U IF (B) ∧ IF (x) /∈U IF (D).
Similarly, the validation query x : C ∧ not(x : (B or D)) searches for an
F-structure H such that H |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ IF (x) /∈U
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IF (B) ∧ IF (x) /∈U IF (D), so the validation query corresponds to an IC
violation.

– Take an IC axiom α = C :: AtLeast(n,R,D). To be satisfied, it requires
an F-structure IIC such that IIC |=F IF (x) ∈ICU IF (C) → (∃y1..k ∈ E s.t.
IF (yi) ∈ I→(IF (R))(IF (x)) ∧ IF (yi) ∈ICU IF (D) ∧ ¬(IF (yi) = IF (yj)) for
k ≥ n. Now, for α to be violated, we have to find a model J in which k < n.
Thus, α is violated if J |=F ∃x ∈ E s.t. IF (x) ∈ICU IF (C) ∧ ∃y1..k ∈ E s.t.
IF (yi) ∈ I→(IF (R))(IF (x)) ∧ IF (yi) ∈ICU IF (D) ∧ ¬(IF (yi) = IF (yj) for
k < n. Here, k is treated as maximum, i.e., there can be no more that k ys.

α is validated by x :C ∧ not(
∧

1≤i≤n x[R → yi] ∧ yi :D
∧

1≤i≤j≤n not(yi =
yj)). Let us now rewrite it at the F-structure level. We will also replace
the outer big conjunction with existential quantifier (makes no difference
in terms of semantics) to allow us to match it to the IC violation formula.
Thus, the query is looking for a model H such that H |=F ∃x ∈ E s.t.
IF (x) ∈U IF (C) ∧ ∃y1..l ∈ E s.t. IF (yi) ∈ I→(IF (R))(IF (x)) ∧ IF (y) ∈U
IF (D) ∧

∧
1≤i≤j≤n not(IF (yi) = IF (yj)) for l < n. Again, l is a maximum,

so no more unique ys can exist.

– Let α = C ::HasSelf(R) be an IC axiom. It is violated if we find a model J
such that J |=F ∃x ∈ E s.t. IF (x) ∈ IF (C) ∧ IF (x) /∈ I→(IF (R))(IF (x)).

The corresponding validation query searches for a model H for which it
holds that H |=F IF (x) ∈U IF (C) and H 6|=F IF (x) ∈U IF (HasSelf(R))
for some x from E . Putting the formulas together and replacing HasSelf(R)
with the corresponding interpretation, we get H |=F ∃x ∈ E s.t. IF (x) ∈U
IF (C) ∧ IF (x) /∈ I→(IF (R))(IF (x)).

– An IC axiom α = C ::Nom(a) is violated in a model J such that J |=F ∃x ∈ E
s.t. IF (x) ∈ IF (C) ∧ IF (x) 6= IF (a). It should be easy to see that the same
formula can be constructed from the corresponding validation query.

– As was stated earlier, universal quantification integrity constraints are writ-
ten using signature expressions in F-logic. Thus, an IC axiom α now takes
the form of α = C[R ⇒ D]. This requires an IC model IIC to satisfy
IF (x) ∈ICU IF (C) ⇒ (IF (y) ∈ IIC→ (IF (R))(IF (x)) ⇒ IF (y) ∈ICU IF (D))
for any x, y ∈ E . α is violated in a model J if J |=F ∃x, y ∈ E s.t. IF (x) ∈U
IF (C) ∧ IF (y) ∈ I→(IF (R))(IF (x)) ∧ IF (y) /∈U IF (D).

Now, for the validation query, we have T (C[R ⇒ D]) = x :C ∧ not(x[R ⇒
D]) (recall that signature expressions propagate from classes to instances).
According to well-typing rules [18], a matching F-structure H satisfies IF (x) ∈U
IF (C) ∧ ¬(IF (y) ∈U I→(IF (R))(IF (x))⇒ IF (y) ∈U IF (D)), thus IF (x) ∈U
IF (C) ∧ IF (y) ∈U I→(IF (R))(IF (x)) ∧ IF (y) /∈U IF (D) for some x, y ∈ E .

– Lastly, consider an integrity constraint axiom α = C :: Some(R,D), which
requires F-structures to satisfy ∀x ∈ E IF (x) ∈ICU IF (C) ⇒ ∃y ∈ E s.t.
IF (y) ∈ IIC→ (IF (R))(IF (x)) ∧ IF (y) ∈ICU IF (D). α is violated if we find a
model J such that J |=F ∃x ∈ E s.t. IF (x) ∈U IF (C) ∧ ∀y ∈ E IF (y) /∈
I→(IF (R))(IF (x)) ∨ IF (y) /∈U IF (D).

Transformation of validation query T (C :: Some(R,D)) = x : C ∧ not(x :
Some(R,D)) follows the path treated several times above and arrives at the
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same expression as the IC α violation, i.e. ∃x ∈ E s.t. IF (x) ∈U IF (C)∧∀y ∈
E IF (y) /∈ I→(IF (R))(IF (x)) ∨ IF (y) /∈U IF (D).

Thus, we have shown that for both RBox axioms and the GCI axiom involv-
ing various concept descriptions integrity constraint checking can be reduced to
query answering in F-logic. ut

5 Related Work

This section reviews works concerning application access to DL ontologies, pro-
vides a comparison of approaches to mapping between description logics and
F-logic and discusses methods of closed-world reasoning.

5.1 Application Access to Ontologies

There exists a number of application libraries which provide programmatic access
to ontologies. They can be roughly divided into two groups [21]:

Domain-independent APIs Jena [8], OWL API [14], or RDF4J [5] are low-
level libraries which represent ontological data on the axiom or statement
level.

Domain-specific APIs Empire [13], KOMMA [30], ActiveRDF [25], and RD-
FReactor [29] allow the application to access ontological data in a frame-
based manner.6

Libraries of type 1 are suitable for generic applications like ontology editors or vo-
cabulary explorers, but their use in domain-specific applications is cumbersome,
because they require a lot of boilerplate code to allow dealing with higher-level
business objects. Libraries of type 2 employ some kind of object-ontological map-
ping (sometimes also called object-triple mapping), so that they map ontological
concepts to programming language reference types, properties to attributes etc.
The problem with these libraries is that they often do not take into account the
open-world nature of ontologies. They do not deal with inferred knowledge (an
inferred assertion cannot be directly removed), and the mapping is done without
any formal basis. These libraries rarely support knowledge outside the mapped
object model and tend to have issues with individual identity. For instance, given
an OWL ontology O = {V ocabulary v Asset, V ocabulary(a)}, Empire, when
asked to retrieve a twice - as an Asset and as a V ocabulary, will return two dif-
ferent objects. The consequences can be anywhere between overwriting updates
to deletion of an object that is being used.

6 A detailed comparison of these libraries can be found in [22].
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5.2 Mapping between DLs and F-logic

The relationship between description logics and F-logic can be approached from
different directions. One, which has been investigated in [12] or [16], enriches a
DL knowledge base with (F-logic) rules to provide additional or more efficient
inferences ([12] considers logic programming languages in general).

The other direction tries to develop a mapping between the two languages. [7]
exploits the fact that DLs are a subset of FOL and maps them to the FOL flavor
of F-logic, i.e., concepts to unary predicates and roles to binary predicates. On
the other hand, Balaban [3] attempts to map DL constructs to F-logic frames.
However, his article deals only with less expressive DLs (ALC). Close to our
approach is also the work of de Bruijn and Heymans [6] which maps SHIQ to
F-logic by first translating it to predicate-based FOL and then mapping it to F-
logic. Compared to Balaban, our mapping deals with more expressive languages
and considers the mapping of integrity constraints. de Bruijn and Heymans’ work
presents, in our opinion, a less readable, although arguably more straightforward,
approach to the mapping. The authors of F-logic themselves discuss its potential
as ontology-modeling language in [17,31].

5.3 Closed-world Reasoning

Application of integrity constraints to DL ontologies, as discussed in Section 2.2,
is closely related to (local) closed-world reasoning. Significant amount of work
has been done in this area in connection with rule-based languages. They often
split the knowledge base into a DL-based OWA part and a rule-based CWA part
with stable [11,9] or well-founded [19,9] model semantics.

Another approach similar to [26] is based on grounded circumscription where
selected concepts and roles are closed and minimized, i.e., they contain only the
minimum necessary known individuals [27].

6 Conclusions

We have introduced a novel formalism for object-ontological mapping based on
the description logic SROIQ and F-logic. The formalism maps both a DL on-
tology and integrity constraints which provide a closed-world view of (a portion
of) the ontology. We have shown that the mapping preserves entailment and pre-
sented means of validating the integrity constraints. As has been shown in [20],
integrity constraints represent the basis of the contract between an ontology and
an object model and are used to define the object model.

However, the presented work is just the first step. The mapping represents
a static structure of the model and the data. The next step should be defining
operations over the data in terms of the formalism. With such definitions, on-
tological operations like data retrieval or modifications would have predictable
and well defined results.

Another step is the actual translation of the F-logic intermediate model into
an object model in a mainstream object-oriented programming language like
Java. Finally, the operations need to be implemented according to the definitions.
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